Bayesian estimation of cerebral perfusion using reduced-contrast-dose dynamic susceptibility contrast perfusion at 3T.

نویسندگان

  • K Nael
  • B Mossadeghi
  • T Boutelier
  • W Kubal
  • E A Krupinski
  • J Dagher
  • J P Villablanca
چکیده

BACKGROUND AND PURPOSE DSC perfusion has been increasingly used in conjunction with other contrast-enhanced MR applications and therefore there is need for contrast-dose reduction when feasible. The purpose of this study was to establish the feasibility of reduced-contrast-dose brain DSC perfusion by using a probabilistic Bayesian method and to compare the results with the commonly used singular value decomposition technique. MATERIALS AND METHODS Half-dose (0.05-mmol/kg) and full-dose (0.1-mmol/kg) DSC perfusion studies were prospectively performed in 20 patients (12 men; 34-70 years of age) by using a 3T MR imaging scanner and a gradient-EPI sequence (TR/TE, 1450/22 ms; flip angle, 90°). All DSC scans were processed with block circulant singular value decomposition and Bayesian probabilistic methods. SNR analysis was performed in both half-dose and full-dose groups. The CBF, CBV, and MTT maps from both full-dose and half-dose scans were evaluated qualitatively and quantitatively in both WM and GM on coregistered perfusion maps. Statistical analysis was performed by using a t test, regression, and Bland-Altman analysis. RESULTS The SNR was significantly (P < .0001) lower in the half-dose group with 32% and 40% reduction in GM and WM, respectively. In the half-dose group, the image-quality scores were significantly higher in Bayesian-derived CBV (P = .02) and MTT (P = .004) maps in comparison with block circulant singular value decomposition. Quantitative values of CBF, CBV, and MTT in Bayesian-processed data were comparable and without a statistically significant difference between the half-dose and full-dose groups. The block circulant singular value decomposition-derived half-dose perfusion values were significantly different from those of the full-dose group both in GM (CBF, P < .001; CBV, P = .02; MTT, P = .02) and WM (CBF, P < .001; CBV, P = .003; MTT, P = .01). CONCLUSIONS Reduced-contrast-dose (0.05-mmol/kg) DSC perfusion of the brain is feasible at 3T by using the Bayesian probabilistic method with quantitative results comparable with those of the full-dose protocol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined low-dose contrast-enhanced MR angiography and perfusion for acute ischemic stroke at 3T: A more efficient stroke protocol.

BACKGROUND AND PURPOSE There is need to improve image acquisition speed for MR imaging in evaluation of patients with acute ischemic stroke. The purpose of this study was to evaluate the feasibility of a 3T MR stroke protocol that combines low-dose contrast-enhanced MRA and dynamic susceptibility contrast perfusion, without additional contrast. METHODS Thirty patients with acute stroke who un...

متن کامل

Hemodynamic segmentation of MR brain perfusion images using independent component analysis, thresholding, and Bayesian estimation.

Dynamic-susceptibility-contrast MR perfusion imaging is a widely used imaging tool for in vivo study of cerebral blood perfusion. However, visualization of different hemodynamic compartments is less investigated. In this work, independent component analysis, thresholding, and Bayesian estimation were used to concurrently segment different tissues, i.e., artery, gray matter, white matter, vein a...

متن کامل

Dynamic contrast-enhanced susceptibility-weighted perfusion imaging of intracranial tumors: a study using a 3T MR scanner.

PURPOSE To determine whether there are statistically significant differences in cerebral blood volume (CBV) and cerebral blood flow (CBF) of brain tumors of different histopathologic types including primary and secondary benign and malignant lesions. To determine whether these measurements relate to tumor grade. MATERIALS AND METHODS Forty-five patients with brain tumors, age 2 to 79 years, u...

متن کامل

Dynamic Contrast Enhanced T1-weighted Perfusion MRI for Measuring Cerebral Perfusion Increase after Visual Stimulation

Introduction: Being able to measure cerebral perfusion and cerebral blood volume quantitatively is of great importance when it comes to diagnosing and treating various cerebrovascular diseases and other brain disorders. In a clinical setting, MR perfusion imaging is normally performed using dynamic susceptibility contrast imaging. When it comes to absolute quantification, this method has severa...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 36 4  شماره 

صفحات  -

تاریخ انتشار 2015